Download: IC Block Diagrams 8-1 Main

IC Block Diagrams 8-1 Main 8-1-1. FAN8082D 8-1 Samsung Electronics 8-1-2. LC87F66C8A Samsung Electronics 8-2 8-3 Samsung Electronics Samsung Electronics 8-4 8-5 Samsung Electronics 8-1-3. M62446AFP Samsung Electronics 8-6 8-7 Samsung Electronics 8-1-4. M66010FP 8-1-5. SI-8050SE 8-1-6. SI-8090JFE Samsung Electronics 8-8 8-1-7. STAC9460-DS 8-9 Samsung Electronics 8-1-8. TDA7440D Samsung Electronics 8-10 8-1-9. 74VHC157 8-1-10. AIC1117A 8-11 Samsung Electronics 8-1-11. M21L216128A Samsung Electronics 8-12 8-1-12. STAC9460 8-13 Samsung Electronics 8-2 DVD MPEG 8-2-1. ESS6028FW Samsung Electronic...
Author: Walway Shared: 8/19/19
Downloads: 920 Views: 3585

Content

IC Block Diagrams 8-1 Main 8-1-1. FAN8082D 8-1 Samsung Electronics, 8-1-2. LC87F66C8A Samsung Electronics 8-2, 8-3 Samsung Electronics, Samsung Electronics 8-4, 8-5 Samsung Electronics, 8-1-3. M62446AFP Samsung Electronics 8-6, 8-7 Samsung Electronics, 8-1-4. M66010FP 8-1-5. SI-8050SE 8-1-6. SI-8090JFE Samsung Electronics 8-8, 8-1-7. STAC9460-DS 8-9 Samsung Electronics, 8-1-8. TDA7440D Samsung Electronics 8-10, 8-1-9. 74VHC157 8-1-10. AIC1117A 8-11 Samsung Electronics, 8-1-11. M21L216128A Samsung Electronics 8-12, 8-1-12. STAC9460 8-13 Samsung Electronics, 8-2 DVD MPEG 8-2-1. ESS6028FW Samsung Electronics 8-14, 8-15 Samsung Electronics, Samsung Electronics 8-16, 8-17 Samsung Electronics, Samsung Electronics 8-18, 8-2-2. 74HCT245 8-19 Samsung Electronics, 8-2-3. BA7665FS 8-2-4. CS8415 Samsung Electronics 8-20, 8-2-5. ESMT_M12L64164A 8-21 Samsung Electronics, 8-2-6. M29W160E 8-2-7. S524C20D21_20D41 Samsung Electronics 8-22, 8-2-8. STM_74LCX157 8-2-9. STM_74LCX244 8-23 Samsung Electronics, 8-2-10. STM_74LCX374 Samsung Electronics 8-24, 8-3 DVD SERVO 8-3-1. M11B416256A 8-25 Samsung Electronics, 8-3-2. M5705 8-3-3. W29EE512F1 Samsung Electronics 8-26, 8-4 MICOM PORT ASSIGNMENT 8-27 Samsung Electronics, * PORT EXPANDER Samsung Electronics 8-28]
15

Similar documents

AVR053: Calibration of the internal RC oscillator Features Introduction
AVR053: Calibration of the internal RC oscillator Features • Calibration using STK500, AVRISP, JTAGICE or JTAGICE mkII • Calibration using 3rd party programmers • Adjustable RC frequency with +/-1% accuracy • Tune RC oscillator at any operating voltage and temperature • Tune RC oscillator to any fre
8-bit Microcontroller Application Note AVR230: DES Bootloader Features
8-bit Microcontroller Application Note Rev. 2541D–AVR–04/05 AVR230: DES Bootloader Features • Fits All AVR Microcontrollers with Bootloader Capabilities • Enables Secure Transfer of Compiled Software or Sensitive Data to Any AVR with Bootloader Capabilities • Includes Easy To Use, Configurable Examp
AVR106: C functions for reading and writing to Flash memory
AVR106: C functions for reading and writing to Flash memory Features • C functions for accessing Flash memory - Byte read - Page read - Byte write - Page write • Optional recovery on power failure • Functions can be used with any device having Self programming Program memory • Example project for us
8-bit Microcontroller Application Note AVR201: Using the AVR® Hardware Multiplier
8-bit Microcontroller Application Note Rev. 1631C–AVR–06/02 AVR201: Using the AVR® Hardware Multiplier Features • 8- and 16-bit Implementations • Signed and Unsigned Routines • Fractional Signed and Unsigned Multiply • Executable Example Programs Introduction The megaAVR is a series of new devices i
  Printed Circuit Board Diagram
Printed Circuit Board Diagram 5-1 MAIN 5-1 Samsung Electronics 5-2 FRONT Samsung Electronics 5-2 5-3 DSP 5-3 Samsung Electronics 5-4 JACK * RCA JACK * SCART JACK Samsung Electronics 5-4 5-5 DVD PACK * TOP VIEW * BOTTOM VIEW 5-5 Samsung Electronics
8-bit Microcontroller Application Note AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
8-bit Microcontroller Application Note Rev. 2546A–AVR–09/03 AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features • Fast Storage of Parameters • High Endurance Flash Storage – 350K Write Cycles • Power Efficient Parameter Storage • Arbitrary Size of Parameters • Semi-redu
8-bit RISC Microcontoller Application Note AVR130: Setup and Use the AVR® Timers Features
8-bit RISC Microcontoller Application Note Rev. 2505A–AVR–02/02 AVR130: Setup and Use the AVR® Timers Features • Description of Timer/Counter Events • Timer/Counter Event Notification • Clock Options • Example Code for Timer0 – Overflow Interrupt • Example Code for Timer1 – Input Capture Interrupt •
8-bit RISC Microcontroller Application Note AVR151: Setup And Use of The SPI Features Introduction
8-bit RISC Microcontroller Application Note Rev. 2585A–AVR–11/04 AVR151: Setup And Use of The SPI Features • SPI Pin Functionality • Multi Slave Systems • SPI Timing • SPI Transmission Conflicts • Emulating the SPI • Code examples for Polled operation • Code examples for Interrupt Controlled operati
AVR241: Direct driving of LCD display using general IO
AVR241: Direct driving of LCD display using general IO Features • Software driver for displays with one common line • Suitable for parts without on-chip hardware for LCD driving • Control up to 15 segments using 16 IO lines • Fully interrupt driven operation Introduction As a low power alternative t
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 0938B–AVR–01/03 AVR204: BCD Arithmetics Features • Conversion 16 Bits ↔ 5 Digits, 8 Bits ↔ 2 Digits • 2-digit Addition and Subtraction • Superb Speed and Code Density • Runable Example Program Introduction This application note lists routines for BCD arith
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 2530B–AVR–01/04 AVR065: LCD Driver for the STK502 and AVR Butterfly Features • Software Driver for Alphanumeric Characters • Liquid Crystal Display (LCD) Contrast Control • Interrupt Controlled Updating • Conversion of ASCII to LCD Segment Control Codes (S
8-bit Instruction Set Instruction Set Nomenclature
8-bit Instruction Set Rev. 0856D–AVR–08/02 Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two’s complement overflow indicator S: N ⊕ V, For signed tests H: Half Carry Flag T: Transfer bit used by BLD and BST instructions I: Gl
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 0933B–AVR–05/02 AVR102: Block Copy Routines Features • Program Memory (Flash) to SRAM Copy Routine • SRAM to SRAM Copy Routine • Extremely Code Efficient Routines Flash → SRAM: 6 Words, SRAM → SRAM: 5 Words • Runable Test/Example Program Introduction This
Novice’s Guide to AVR Development intended for
Novice’s Guide to AVR Development Preparing your PC for AVR Development Basic AVR Knowledge An Introduction Let's make an easy start, and download the files that we will need later on. The AVR Microcontroller family is a modern architecture, with all the bells andFirst you should download the files
AVR079: STK600 Communication Protocol
AVR079: STK600 Communication Protocol Features 8-bit • Supported Commands and Command options • Command and Answer package formats Microcontrollers 1 Introduction Application Note This document describes the STK®600 protocol. The firmware is distributed with AVR Studio® 4.14 or later. The definition
8-bit Instruction Set Instruction Set Nomenclature
8-bit Instruction Set Rev. 0856G–AVR–07/08 Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two’s complement overflow indicator S: N ⊕ V, For signed tests H: Half Carry Flag T: Transfer bit used by BLD and BST instructions I: Gl
Designer’s Designing for Efficient Production Corner with In-System Re-programmable Flash µCs
Designer’s Designing for Efficient Production Corner with In-System Re-programmable Flash µCs By: OJ Svendlsi always the component where the majority of the engi- neering hours are spent. Thus, making sure the micro- For products where time-to-market and efficient pro- controller has what it takes t
AVR069: AVRISP mkII Communication Protocol
AVR069: AVRISP mkII Communication Protocol Features • General commands • ISP commands • Return values • Parameters 1 Introduction This document describes the AVRISP mkII protocol. The firmware is distributed with AVR Studio 4.12 or later. Download the latest AVR Studio from the Atmel web site, http:
Studio® Integrated Development A COMPLETE SOFTWARE ENVIRONMENT TO Environment DEVELOP AVR® APPLICATIONS. IT’S FREE!
MICROCONTROLLERSStudio® Integrated Development A COMPLETE SOFTWARE ENVIRONMENT TO Environment DEVELOP AVR® APPLICATIONS. IT’S FREE! AVR Studio® is an Integrated Development Environment for writing and debugging AVR applications in Windows® 98/XP/ME/2000 and Windows NT® environments. AVR Studio provi
Hexadecimal Object File Format Specification
Hexadecimal Object File Format Specification Revision A January 6, 1988 This specification is provided "as is" with no warranties whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specifi
AVR914: CAN & UART based Bootloader for AT90CAN32, AT90CAN64, & AT90CAN128 1. Features
AVR914: CAN & UART based Bootloader for AT90CAN32, AT90CAN64, & AT90CAN128 1. Features • UART Protocol 8-bit – UART used as Physical Layer – Based on the Intel Hex-type records Microcontrollers – Auto-baud • CAN Protocol – CAN used as Physical Layer Application Note – 7 re-programmable ISP CAN ident
AVR Microcontrollers Application Note
AVR Microcontrollers Application Note AVR495: AC Induction Motor Control Using the Constant V/f Principle and a Space-vector PWM Algorithm 1. Features • Cost-effective and energy efficient 3-phase induction motor drive • Interrupt driven • Low memory and computing requirements 2. Introduction In a p
AVR Microcontrollers Application Note AVR494: AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm
AVR Microcontrollers Application Note AVR494: AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm 1. Features • Cost-effective and flexible 3-phase induction motor drive • Interrupt driven • Low memory and computing requirements 2. Introduction Electrical power ha
AVR465: Single-Phase Power/Energy Meter with Tamper Detection
AVR465: Single-Phase Power/Energy Meter with Tamper Detection Features • Cost-Effective and Flexible Single-Phase Energy Meter • Fulfills IEC 61036 Accuracy Requirements for Class 1 Meters • Detects, Signals and Continues to Measure Accurately Under At Least 20 Different Tamper Conditions • Design E
AVR453: Smart Battery Reference Design
AVR453: Smart Battery Reference Design Features • Support for up to 4 Li-Ion series-connected battery cells • Battery protection by dedicated Hardware - Deep under voltage protection - Over-current protection during charging - Over-current protection during discharging - Short circuit protection • C
8-bit Microcontroller Application Note AVR450: Battery Charger for SLA, NiCd, NiMH and Li-Ion Batteries Features
8-bit Microcontroller Application Note Rev. 1659B–AVR–11/02 AVR450: Battery Charger for SLA, NiCd, NiMH and Li-Ion Batteries Features • Complete Battery Charger Design • Modular “C” Source Code and Extremely Compact Assembly Code • Low Cost • Supports Most Common Battery Types • Fast Charging Algori
Getting started with the AVR battery charger reference design.
Getting started with the AVR battery charger reference design. The AVR battery charger reference design is designed for use with several types of batteries and various number of battery cells. The AVR battery charger reference design is supplied with resistor values for scaling down the charge volta
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 2534A–AVR–05/03 AVR415: RC5 IR Remote Control Transmitter Features • Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin • Size Efficient Code, Leaves Room for Large User Code • Low Power Consumption through Intensive Use of Sleep Modes • Cos
AVR336: ADPCM Decoder
AVR336: ADPCM Decoder Features • AVR Application Decodes ADPCM Signal in Real-Time • Supports Bit Rates of 16, 24, 32 and 40 kbit/s • More Than One Minute Playback Time on ATmega128 (at 16 kbit/s) • Decoded Signal Played Using Timer/Counter in PWM Mode 1 Introduction Adaptive Differential Pulse Code
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 1181B–AVR–04/03 AVR360: Step Motor Controller Features • High-speed Step Motor Controller • Interrupt Driven • Compact Code (Only 10 Bytes Interrupt Routine) • Very High Speed • Low Computing Requirement • Supports all AVR Devices Introduction This applica