Download: Printed Circuit Board Diagram

Printed Circuit Board Diagram 5-1 MAIN 5-1 Samsung Electronics 5-2 FRONT Samsung Electronics 5-2 5-3 DSP 5-3 Samsung Electronics 5-4 JACK * RCA JACK * SCART JACK Samsung Electronics 5-4 5-5 DVD PACK * TOP VIEW * BOTTOM VIEW 5-5 Samsung Electronics...
Author: Walway Shared: 8/19/19
Downloads: 8 Views: 1109

Content

Printed Circuit Board Diagram 5-1 MAIN 5-1 Samsung Electronics, 5-2 FRONT Samsung Electronics 5-2, 5-3 DSP 5-3 Samsung Electronics, 5-4 JACK * RCA JACK * SCART JACK Samsung Electronics 5-4, 5-5 DVD PACK * TOP VIEW * BOTTOM VIEW 5-5 Samsung Electronics]
15

Similar documents

8-bit Microcontroller Application Note AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory
8-bit Microcontroller Application Note Rev. 2546A–AVR–09/03 AVR105: Power Efficient High Endurance Parameter Storage in Flash Memory Features • Fast Storage of Parameters • High Endurance Flash Storage – 350K Write Cycles • Power Efficient Parameter Storage • Arbitrary Size of Parameters • Semi-redu
8-bit RISC Microcontoller Application Note AVR130: Setup and Use the AVR® Timers Features
8-bit RISC Microcontoller Application Note Rev. 2505A–AVR–02/02 AVR130: Setup and Use the AVR® Timers Features • Description of Timer/Counter Events • Timer/Counter Event Notification • Clock Options • Example Code for Timer0 – Overflow Interrupt • Example Code for Timer1 – Input Capture Interrupt •
8-bit RISC Microcontroller Application Note AVR151: Setup And Use of The SPI Features Introduction
8-bit RISC Microcontroller Application Note Rev. 2585A–AVR–11/04 AVR151: Setup And Use of The SPI Features • SPI Pin Functionality • Multi Slave Systems • SPI Timing • SPI Transmission Conflicts • Emulating the SPI • Code examples for Polled operation • Code examples for Interrupt Controlled operati
AVR241: Direct driving of LCD display using general IO
AVR241: Direct driving of LCD display using general IO Features • Software driver for displays with one common line • Suitable for parts without on-chip hardware for LCD driving • Control up to 15 segments using 16 IO lines • Fully interrupt driven operation Introduction As a low power alternative t
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 0938B–AVR–01/03 AVR204: BCD Arithmetics Features • Conversion 16 Bits ↔ 5 Digits, 8 Bits ↔ 2 Digits • 2-digit Addition and Subtraction • Superb Speed and Code Density • Runable Example Program Introduction This application note lists routines for BCD arith
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 2530B–AVR–01/04 AVR065: LCD Driver for the STK502 and AVR Butterfly Features • Software Driver for Alphanumeric Characters • Liquid Crystal Display (LCD) Contrast Control • Interrupt Controlled Updating • Conversion of ASCII to LCD Segment Control Codes (S
8-bit Instruction Set Instruction Set Nomenclature
8-bit Instruction Set Rev. 0856D–AVR–08/02 Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two’s complement overflow indicator S: N ⊕ V, For signed tests H: Half Carry Flag T: Transfer bit used by BLD and BST instructions I: Gl
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 0933B–AVR–05/02 AVR102: Block Copy Routines Features • Program Memory (Flash) to SRAM Copy Routine • SRAM to SRAM Copy Routine • Extremely Code Efficient Routines Flash → SRAM: 6 Words, SRAM → SRAM: 5 Words • Runable Test/Example Program Introduction This
Novice’s Guide to AVR Development intended for
Novice’s Guide to AVR Development Preparing your PC for AVR Development Basic AVR Knowledge An Introduction Let's make an easy start, and download the files that we will need later on. The AVR Microcontroller family is a modern architecture, with all the bells andFirst you should download the files
AVR079: STK600 Communication Protocol
AVR079: STK600 Communication Protocol Features 8-bit • Supported Commands and Command options • Command and Answer package formats Microcontrollers 1 Introduction Application Note This document describes the STK®600 protocol. The firmware is distributed with AVR Studio® 4.14 or later. The definition
8-bit Instruction Set Instruction Set Nomenclature
8-bit Instruction Set Rev. 0856G–AVR–07/08 Instruction Set Nomenclature Status Register (SREG) SREG: Status Register C: Carry Flag Z: Zero Flag N: Negative Flag V: Two’s complement overflow indicator S: N ⊕ V, For signed tests H: Half Carry Flag T: Transfer bit used by BLD and BST instructions I: Gl
Designer’s Designing for Efficient Production Corner with In-System Re-programmable Flash µCs
Designer’s Designing for Efficient Production Corner with In-System Re-programmable Flash µCs By: OJ Svendlsi always the component where the majority of the engi- neering hours are spent. Thus, making sure the micro- For products where time-to-market and efficient pro- controller has what it takes t
AVR069: AVRISP mkII Communication Protocol
AVR069: AVRISP mkII Communication Protocol Features • General commands • ISP commands • Return values • Parameters 1 Introduction This document describes the AVRISP mkII protocol. The firmware is distributed with AVR Studio 4.12 or later. Download the latest AVR Studio from the Atmel web site, http:
Studio® Integrated Development A COMPLETE SOFTWARE ENVIRONMENT TO Environment DEVELOP AVR® APPLICATIONS. IT’S FREE!
MICROCONTROLLERSStudio® Integrated Development A COMPLETE SOFTWARE ENVIRONMENT TO Environment DEVELOP AVR® APPLICATIONS. IT’S FREE! AVR Studio® is an Integrated Development Environment for writing and debugging AVR applications in Windows® 98/XP/ME/2000 and Windows NT® environments. AVR Studio provi
Hexadecimal Object File Format Specification
Hexadecimal Object File Format Specification Revision A January 6, 1988 This specification is provided "as is" with no warranties whatsoever, including any warranty of merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specifi
AVR914: CAN & UART based Bootloader for AT90CAN32, AT90CAN64, & AT90CAN128 1. Features
AVR914: CAN & UART based Bootloader for AT90CAN32, AT90CAN64, & AT90CAN128 1. Features • UART Protocol 8-bit – UART used as Physical Layer – Based on the Intel Hex-type records Microcontrollers – Auto-baud • CAN Protocol – CAN used as Physical Layer Application Note – 7 re-programmable ISP CAN ident
AVR Microcontrollers Application Note
AVR Microcontrollers Application Note AVR495: AC Induction Motor Control Using the Constant V/f Principle and a Space-vector PWM Algorithm 1. Features • Cost-effective and energy efficient 3-phase induction motor drive • Interrupt driven • Low memory and computing requirements 2. Introduction In a p
AVR Microcontrollers Application Note AVR494: AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm
AVR Microcontrollers Application Note AVR494: AC Induction Motor Control Using the constant V/f Principle and a Natural PWM Algorithm 1. Features • Cost-effective and flexible 3-phase induction motor drive • Interrupt driven • Low memory and computing requirements 2. Introduction Electrical power ha
AVR465: Single-Phase Power/Energy Meter with Tamper Detection
AVR465: Single-Phase Power/Energy Meter with Tamper Detection Features • Cost-Effective and Flexible Single-Phase Energy Meter • Fulfills IEC 61036 Accuracy Requirements for Class 1 Meters • Detects, Signals and Continues to Measure Accurately Under At Least 20 Different Tamper Conditions • Design E
AVR453: Smart Battery Reference Design
AVR453: Smart Battery Reference Design Features • Support for up to 4 Li-Ion series-connected battery cells • Battery protection by dedicated Hardware - Deep under voltage protection - Over-current protection during charging - Over-current protection during discharging - Short circuit protection • C
8-bit Microcontroller Application Note AVR450: Battery Charger for SLA, NiCd, NiMH and Li-Ion Batteries Features
8-bit Microcontroller Application Note Rev. 1659B–AVR–11/02 AVR450: Battery Charger for SLA, NiCd, NiMH and Li-Ion Batteries Features • Complete Battery Charger Design • Modular “C” Source Code and Extremely Compact Assembly Code • Low Cost • Supports Most Common Battery Types • Fast Charging Algori
Getting started with the AVR battery charger reference design.
Getting started with the AVR battery charger reference design. The AVR battery charger reference design is designed for use with several types of batteries and various number of battery cells. The AVR battery charger reference design is supplied with resistor values for scaling down the charge volta
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 2534A–AVR–05/03 AVR415: RC5 IR Remote Control Transmitter Features • Utilizes ATtiny28 Special HW Modulator and High Current Drive Pin • Size Efficient Code, Leaves Room for Large User Code • Low Power Consumption through Intensive Use of Sleep Modes • Cos
AVR336: ADPCM Decoder
AVR336: ADPCM Decoder Features • AVR Application Decodes ADPCM Signal in Real-Time • Supports Bit Rates of 16, 24, 32 and 40 kbit/s • More Than One Minute Playback Time on ATmega128 (at 16 kbit/s) • Decoded Signal Played Using Timer/Counter in PWM Mode 1 Introduction Adaptive Differential Pulse Code
8-bit Microcontroller Application Note
8-bit Microcontroller Application Note Rev. 1181B–AVR–04/03 AVR360: Step Motor Controller Features • High-speed Step Motor Controller • Interrupt Driven • Compact Code (Only 10 Bytes Interrupt Routine) • Very High Speed • Low Computing Requirement • Supports all AVR Devices Introduction This applica
8-bit RISC Microcontroller Application Note AVR335: Digital Sound Recorder with AVR and Serial DataFlash Features
8-bit RISC Microcontroller Application Note Rev. 1456B–01/04 AVR335: Digital Sound Recorder with AVR and Serial DataFlash Features • Digital Voice Recorder • 8-bit Sound Recording • 8 KHz Sampling Rate • Sound Frequency up to 4000 Hz • Maximum Recording Time 2 1/4 Minutes • Very Small Board Size • O
USB in a Nutshell. Making Sense of the USB Standard.
USB in a Nutshell. Making Sense of the USB Standard. Starting out new with USB can be quite daunting. With the USB 2.0 specification at 650 pages one could easily be put off just by the sheer size of the standard. This is only the beginning of a long list of associated standards for USB. There are U
What is USB Enumeration? What does enumeration look like?
What is USB Enumeration? Enumeration is the process by which a USB device is attached to a system and is assigned a specific numerical address that will be used to access that particular device. It is also the time at which the USB host controller queries the device in order to decide what type of d
Draft
CYCLIC REDUNDANCY CHECKS IN USB Introduction The USB specification calls for the use of Cyclic Redundancy Checksums (CRC) to protect all non-PID fields in token and data packets from errors during transmission. This paper describes the mathematical basis behind CRC in an intuitive fashion and then e
File: X:\USERS\IGOR\DOC\WORD\Atmel\USB to RS232 Application Note\Firmware\USBtoRS232_ATmega8\AVR Studio 4 project\USBtoRS232.asm 1.2.2004
1 ;*************************************************************************** 2 ;* USBSTACKFORTHEAVRFAMILY3;* 4 ;* File Name :"USBtoRS232.asm" 5 ;* Title :AVR309:USB to UART protocol converter 6 ;* Date :01.02.2004 7 ;* Version :2.8 8 ;* Target MCU :ATmega8 9 ;* AUTHOR :Ing. Igor Cesko 10 ;* Slovak