Download: DATA SHEET BYG80 series Ultra fast low-loss controlled avalanche rectifiers
DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D168 BYG80 series Ultra fast low-loss controlled avalanche rectifiers Objective specification 1996 May 24 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION The well-defined void-free case is of a transfer-moulded thermo-setting • Glass passivated DO-214AC surface mountable plastic. • High maximum operating package with glass passivated chip. temperature • Low leakage current • Excellent stability handbook, 4 columns cathode band • Guaranteed avalanche energykaabsorption capability • UL 94V-O classified plastic package • Shippe...
Author:
Cintrón Shared: 8/19/19
Downloads: 17 Views: 3270
Content
DISCRETE SEMICONDUCTORS
DATA SHEET
handbook, halfpage M3D168BYG80 series Ultra fast low-loss
controlled avalanche rectifiers Objective specification 1996 May 24 File under Discrete Semiconductors, SC01, FEATURES DESCRIPTION The well-defined void-free case is of a transfer-moulded thermo-setting • Glass passivated DO-214AC surface mountable plastic. • High maximum operating package with glass passivated chip. temperature • Low leakage current • Excellent stability handbook, 4 columns cathode band • Guaranteed avalanche energykaabsorption capability • UL 94V-O classified plastic package • Shipped in 12 mm embossed tape. Top view Side view MSA474 Fig.1 Simplified outline (DO-214AC; SOD106) and symbol. LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VRRM repetitive peak reverse voltage BYG80J − 600 V VR continuous reverse voltage BYG80J − 600 V IF(AV) average forward current averaged over any 20 ms period; BYG80D Ttp = 135 °C − 1.6 A BYG80G − 1.5 A BYG80J − 1.1 A IFSM non-repetitive peak forward current t = 10 ms half sine wave; BYG80D Tj = Tj max prior to surge; − 36AV= V BYG80G R RRMmax − 32 A BYG80J − 32 A ERSM non-repetitive peak reverse L = 120 mH; Tj = Tj max prior to surge; − 10 mJ avalanche energy inductive load switched off Tstg storage temperature −65 +175 °C Tj junction temperature −65 +175 °C 1996 May 24 2, ELECTRICAL CHARACTERISTICS Tj = 25 °C unless otherwise specified. SYMBOL PARAMETER CONDITIONS MAX. UNIT VF forward voltage IF = 1 A; Tj = 150 °C BYG80D 0.71 V BYG80G 0.77 V BYG80J 1.05 V VF forward voltage IF = 1 A BYG80D 0.93 V BYG80G 0.98 V BYG80J 1.25 V IR reverse current VR = VRRMmax 1 µA BYG80D VR = VRRMmax; Tj = 165 °C 100 µA BYG80G 150 µA BYG80J 150 µA trr reverse recovery time when switched from IF = 0.5 A to IR = 1 A; BYG80D measured at IR = 0.25 A; see Fig.2 25 ns BYG80G 50 ns BYG80J 50 ns THERMAL CHARACTERISTICS SYMBOL PARAMETER CONDITIONS VALUE UNIT Rth j-tp thermal resistance from junction to tie-point 25 K/W Rth j-a thermal resistance from junction to ambient note 1 100 K/W note 2 150 K/W Notes 1. Device mounted on Al2O3 printed-circuit board, 0.7 mm thick; thickness of copper ≥35 µm, see Fig.3. 2. Device mounted on epoxy-glass printed-circuit board, 1.5 mm thick; thickness of copper ≥40 µm, see Fig.3. For more information please refer to the ‘General Part of Handbook SC01’. 1996 May 24 3, GRAPHICAL DATA handbook, full pagewidth IDUT F + 0.5 10 Ω 25Vtrr1Ω50Ω0t0.25 0.5IR
1 MAM057 Input impedance oscilloscope: 1 MΩ, 22 pF; tr ≤ 7 ns. Source impedance: 50 Ω; tr ≤ 15 ns. Fig.2 Test circuit and reverse recovery time waveform and definition. handbook, full pagewidth 4.5 2.5 1.25 MSB213 Dimensions in mm. Material: AL2O3 or epoxy-glass. Fig.3 Printed-circuit board for surface mounting. 1996 May 24 4, PACKAGE OUTLINE 5.5 handbook, full pagewidth 5.1 4.5 4.3 2.3 2.0 0.05 0.23.3 2.7 MSA414 2.8 1.6 2.4 1.4 Dimensions in mm. Fig.4 DO-214AC; SOD106.DEFINITIONS
Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 1996 May 24 5]15
Similar documents

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D168 BYG60 series Fast soft-recovery controlled avalanche rectifiers Preliminary specification 1996 Jun 05 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION The well-defined void-free case is of a transfer-moulded thermo-setting • G

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D168 BYG50 series Controlled avalanche rectifiers Preliminary specification 1996 May 24 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION The well-defined void-free case is of a transfer-moulded thermo-setting • Glass passivated DO-

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D121 BYD77 series Ultra fast low-loss controlled avalanche rectifiers Product specification 1996 May 24 Supersedes data of December 1991 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION hermetically sealed and fatigue free as coeff

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D119 BYD73 series Ultra fast low-loss controlled avalanche rectifiers Product specification 1996 May 24 Supersedes data of December 1991 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION hermetically sealed and fatigue free as coeff

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D122 BYD71 series Ultra fast low-loss controlled avalanche rectifiers Product specification 1996 May 24 Supersedes data of February 1992 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION hermetically sealed and fatigue free as coeff

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D119 BYD63 Ripple blocking diode Product specification 1996 Jun 10 Supersedes data of November 1995 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION and fatigue free as coefficients of • expansion of all used parts areGlass passiva

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D121 BYD57 series Fast soft-recovery controlled avalanche rectifiers Product specification 1996 Jun 05 Supersedes data of October 1993 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION hermetically sealed and fatigue free as coeffic

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D119 BYD53 series Fast soft-recovery controlled avalanche rectifiers Product specification 1996 Jun 05 Supersedes data of December 1994 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION hermetically sealed and fatigue free as coeffi

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D121 BYD47 series Fast soft-recovery rectifiers Product specification 1996 Jun 05 Supersedes data of November 1994 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION hermetically sealed and fatigue free as coefficients of expansion o

DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D119 BYD43 series Fast soft-recovery rectifiers Product specification 1996 Jun 05 Supersedes data of February 1995 File under Discrete Semiconductors, SC01 FEATURES DESCRIPTION and fatigue free as coefficients of expansion of all used parts are