Download: Order this document SEMICONDUCTOR TECHNICAL DATA by MRF136/D The RF MOSFET Line !

Order this document SEMICONDUCTOR TECHNICAL DATA by MRF136/D The RF MOSFET Line ! .designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range, in either single ended or push–pull configuration. • Guaranteed 28 Volt, 150 MHz Performance 15 W, 30 W, to 400 MHz MRF136 MRF136Y N–CHANNEL Output Power = 15 Watts Output Power = 30 Watts MOS BROADBAND Narrowband Gain = 16 dB (Typ) Broadband Gain = 14 dB (Typ) RF POWER FETs Efficiency = 60% (Typical) Efficiency = 54% (Typical) • Small–Signal and Large–Signal Characterization • 100% Tested For Load Mismatch At All Phase...
Author: Florian Hartmann Shared: 8/19/19
Downloads: 1008 Views: 2906

Content

Order this document SEMICONDUCTOR TECHNICAL DATA by MRF136/D The RF MOSFET Line

! .designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range, in either single ended or push–pull configuration. • Guaranteed 28 Volt, 150 MHz Performance 15 W, 30 W, to 400 MHz MRF136 MRF136Y N–CHANNEL Output Power = 15 Watts Output Power = 30 Watts MOS BROADBAND Narrowband Gain = 16 dB (Typ) Broadband Gain = 14 dB (Typ) RF POWER FETs Efficiency = 60% (Typical) Efficiency = 54% (Typical) • Small–Signal and Large–Signal Characterization • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR MRF136 D • Space Saving Package For Push–Pull Circuit Applications — MRF136Y CASE 211–07, STYLE 2 MRF136 • Excellent Thermal Stability,

G

Ideally Suited For Class A Operation • Facilitates Manual Gain S Control, ALC and MRF136Y D Modulation Techniques

G S

G (FLANGE) CASE 319B–02, STYLE 1 MRF136Y

D

MAXIMUM RATINGS Value Rating Symbol Unit MRF136 MRF136Y Drain–Source Voltage VDSS 65 65 Vdc Drain–Gate Voltage (RGS = 1.0 MΩ) VDGR 65 65 Vdc Gate–Source Voltage VGS ±40 Vdc Drain Current — Continuous ID 2.5 5.0 Adc Total Device Dissipation @ TC = 25°C PD 55 100 Watts Derate above 25°C 0.314 0.571 W/°C Storage Temperature Range Tstg –65 to +150 °C Operating Junction Temperature TJ 200 °C THERMAL CHARACTERISTICS Max Characteristic Symbol Unit MRF136 MRF136Y Thermal Resistance, Junction to Case RθJC 3.2 1.75 °C/W Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV6MMOotoTrOolaR, OIncL. A19 R94F DEVICE DATA MRF136 MRF136Y, ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICS (1) Drain–Source Breakdown Voltage V(BR)DSS 65 — — Vdc (VGS = 0, ID = 5.0 mA) Zero–Gate Voltage Drain Current IDSS — — 2.0 mAdc (VDS = 28 V, VGS = 0) Gate–Source Leakage Current IGSS — — 1.0 µAdc (VGS = 40 V, VDS = 0) ON CHARACTERISTICS (1) Gate Threshold Voltage VGS(th) 1.0 3.0 6.0 Vdc (VDS = 10 V, ID = 25 mA) Forward Transconductance gfs 250 400 — mmhos (VDS = 10 V, ID = 250 mA) DYNAMIC CHARACTERISTICS (1) Input Capacitance Ciss — 24 — pF (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance Coss — 27 — pF (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance Crss — 5.5 — pF (VDS = 28 V, VGS = 0, f = 1.0 MHz) FUNCTIONAL CHARACTERISTICS (2) Noise Figure MRF136 NF — 1.0 — dB (VDS = 28 Vdc, ID = 500 mA, f = 150 MHz) Common Source Power Gain (Figure 1) MRF136 Gps 13 16 — dB (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Common Source Power Gain (Figure 2) MRF136Y Gps 12 14 — dB (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) Drain Efficiency (Figure 1) MRF136 η 50 60 — % (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Drain Efficiency (Figure 2) MRF136Y η 50 54 — % (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) Electrical Ruggedness (Figure 1) MRF136 ψ (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA, No Degradation in Output Power VSWR 30:1 at all Phase Angles) Electrical Ruggedness (Figure 2) MRF136Y ψ (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA, No Degradation in Output Power VSWR 30:1 at all Phase Angles) NOTES: 1. For MRF136Y, each side measured separately. 2. For MRF136Y measured in push–pull configuration. MRF136 MRF136Y MOTOROLA RF DEVICE DATA, R4 RFC2C10 C11 VDD = + 28 V + BIAS D1 C8 C9–

ADJUST

R3 RFC1 R2 C7 R1 L2 L3 C6 C1 RF OUTPUTL1 RF INPUT C4 C3 C5 C2 DUT C1, C2 — Arco 406, 15–115 pF or Equivalent L1 — 2 Turns, 0.29″ ID, #18 AWG, 0.10″ Long C3 — Arco 404, 8–60 pF or Equivalent L2 — 2 Turns, 0.23″ ID, #18 AWG, 0.10″ Long C4 — 43 pF Mini–Unelco or Equivalent L3 — 2–1/4 Turns, 0.29″ ID, #18 AWG, 0.125″ Long C5 — 24 pF Mini–Unelco or Equivalent RFC1 — 20 Turns, 0.30″ ID, #20 AWG Enamel Closewound C6 — 680 pF, 100 Mils Chip RFC2 — Ferroxcube VK–200 — 19/4B C7 — 0.01 µF Ceramic R1 — 27 Ω, 1 W Thin Film C8 — 100 µF, 40 V R2 — 10 kΩ, 1/4 W C9 — 0.1 µF Ceramic R3 — 10 Turns, 10 kΩ C10, C11 — 680 pF Feedthru R4 — 1.8 kΩ, 1/2 W D1 — 1N5925A Motorola Zener Board Material — 0.062″ G10, 1 oz. Cu Clad, Double Sided

Figure 1. 150 MHz Test Circuit (MRF136)

R4 R6

BIAS

ADJUST D1 C11 RFC1 C2 R2 C3 RFC2R5 C5 C8 VDD = + 28 V C6 R1 C7GDRF INPUT T1 T2 RF OUTPUT C1SABGDDUT C9 C10 R3 C4 C1 — 5.0 pF R5 — 56 kΩ, 1 W C2, C3, C4, C6, C7, C9, C11 — 0.1 µF Ceramic R6 — 1.6 kΩ, 1/4 W C5, C8 — 680 pF Feedthru T1 — Primary Winding — 3 Turns #28 Enameled Wire. C10 — 15 pF T1 — Secondary Winding — 2 Turns #28 Enameled Wire. D1 — 1N4740 Motorola Zener T1 — Both windings wound through a Fair/Rite Balun 65 core. RFC1 — 17 Turns, #24 AWG Wound on R5 T1 — Part #2865002402. RFC2 — Ferroxcube VK–200–19/4B or Equivalent T2 — 1:1 Transformer Wound Bifilar — 2 Turns Twisted Pair R1 — 10 kΩ, 1/4 W T1 — #24 Enameled Wire through a Indiana General Balun Q1 R2, R3 — 560 Ω, 1/2 W T1 — core. Part #18006–1–Q1. Primary winding center tapped. R4 — 10 Turns, 10 kΩ Board Material — 0.062″ G10, 1 oz. Cu Clad, Double Sided

Figure 2. 30–150 MHz Test Circuit (MRF136Y) MOTOROLA RF DEVICE DATA MRF136 MRF136Y

, 20 10 189f= 100 MHz 150 MHz 200 MHz f = 100 MHz 16 8 14 7 150 MHz 12 6 200 MHz 1058463VDD = 28 V VDD = 13.5 V4 2 IDQ = 25 mA IDQ = 25 mA21000200 400 600 800 1000 0 200 400 600 800 1000 Pin, INPUT POWER (MILLWATTS) Pin, INPUT POWER (MILLWATTS)

Figure 3. Output Power versus Input Power Figure 4. Output Power versus Input Power

20 24 f = 400 MHz VDD = 28 V 16 P = 600 mWIDQ = 25 mA in 12 15 400 mW 10 12 8 200 mW VDD = 13.5V94IDQ = 25 mA23f= 100 MHz000123412 14 16 18 20 22 24 26 28 Pin, INPUT POWER (WATTS) VDD, SUPPLY VOLTAGE (VOLTS)

Figure 5. Output Power versus Input Power Figure 6. Output Power versus Supply Voltage

24 24 Pin = 900 mW 21 21 Pin = 1 W 18 18 600 mW 15 15 0.7 W 12 12 300 mW990.4W66IDQ = 25 mA IDQ = 25 mA3f= 150 MHz3f= 200 MHz0012 14 16 18 20 22 24 26 28 12 14 16 18 20 22 24 26 28 VDD, SUPPLY VOLTAGE (VOLTS) VDD, SUPPLY VOLTAGE (VOLTS)

Figure 7. Output Power versus Supply Voltage Figure 8. Output Power versus Supply Voltage MRF136 MRF136Y MOTOROLA RF DEVICE DATA

Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS), 20 16 18 IDQ = 25 mA VDD = 28Vf= 400 MHz Pin = 3 W IDQ = 25 mA 16 P 12 in = CONSTANT 400 MHz2W12 10 1081WTYPICAL DEVICE 410500 M MHHzz8 6 SHOWN, VGS(th) = 3 V6220012 14 16 18 20 22 24 26 28 – 7 – 6 – 5 – 4 – 3 – 2 –10123VDD, SUPPLY VOLTAGE (VOLTS) VGS, GATE–SOURCE VOLTAGE (VOLTS)

Figure 9. Output Power versus Supply Voltage Figure 10. Output Power versus Gate Voltage MRF136 MRF136

2 1.04 VDS = 28 V ID = 750 mA 1.8 1.03 TYPICAL DEVICE 1.6 SHOWN, V = 3 V 1.02GS(th) 500 mA 1.4 1.01 1.2110.99 VDS = 10 V 0.8 0.98 250 mA 0.6 0.97 0.4 0.96 25 mA 0.2 0.95 0 0.9401234567– 25 0 25 50 75 100 125 150 175 VDS, GATE–SOURCE VOLTAGE (VOLTS) TC, CASE TEMPERATURE (°C)

Figure 11. Drain Current versus Gate Voltage Figure 12. Gate–Source Voltage versus

(Transfer Characteristics)* Case Temperature*

MRF136/MRF136Y MRF136/MRF136Y

100 10 MRF136Y 180 V GS = 0Vf= 1 MHz 3 MRF136 60 Coss TC = 25°C 40 Ciss 0.3 20 Crss 0.2 0 0.104812 16 20 24 28123510 20 30 50 70 100 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) VDS, DRAIN–SOURCE VOLTAGE (VOLTS)

Figure 13. Capacitance versus Drain–Source Voltage* Figure 14. DC Safe Operating Area MRF136/MRF136Y MRF136/MRF136Y

*Data shown applies to MRF136 and each half of MRF136Y.

MOTOROLA RF DEVICE DATA MRF136 MRF136Y

C, CAPACITANCE (pF) ID, DRAIN CURRENT (MILLAMPS) Pout , OUTPUT POWER (WATTS) I , DRAIN CURRENT (AMPS) VGS, GATE-SOURCE VOLTAGE (NORMALIZED)D Pout , OUTPUT POWER (WATTS),

MRF136Y TYPICAL PERFORMANCE IN BROADBAND TEST CIRCUIT

(Refer to Figure 2) 40 16 35 14 30 12 25 10 f = 150 MHz 20 8 30 MHz 15 6 VDD = 28VV= 28VI10 DD DQ = 100 mA IDQ = 100 mA 4 Pout = 30W520000.5 1 1.5 2 2.5 0 20 40 60 80 100 120 140 160 Pin, INPUT POWER (WATTS) f, FREQUENCY (MHz)

Figure 15. Output Power versus Input Power Figure 16. Power Gain versus Frequency

100 30 90 VDD = 28 V VDD = 28Vf= 150 MHz I = 100 mA I = 100 mA 80 DQ 25 DQPout = 30 W Pin = CONSTANT 30 MHz 20 TYPICAL DEVICE 60 SHOWN, VGS(th) = 3 V 50 15 30 1000020 40 60 80 100 120 140 160 – 6 – 4 – 20246f, FREQUENCY (MHz) VGS, GATE–SOURCE VOLTAGE (VOLTS)

Figure 17. Drain Efficiency versus Frequency Figure 18. Output Power versus Gate Voltage TYPICAL 400 MHz PERFORMANCE

40 40 35 35 VDD = 28 V IDQ = 100 mA 30 30 Pin = CONSTANT 25 25 TYPICAL DEVICE SHOWN, VGS(th) = 3 V 20 20 15 15 10 VDD = 28 V IDQ = 100 mA f = 400 MHz5f= 400 MHz50000.5 1 1.5 2 2.5 3 3.5 – 4 – 3 – 2 –101234Pin, INPUT POWER (WATTS) VGS, GATE–SOURCE VOLTAGE (VOLTS)

Figure 19. Output Power versus Input Power Figure 20. Output Power versus Gate Voltage MRF136 MRF136Y MOTOROLA RF DEVICE DATA

Pout, OUTPUT POWER (WATTS) η, EFFICIENCY (%) Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) POWER GAIN (dB), Zin 150 400 f = 100 MHz ZOL* VDD = 28 V, IDQ = 25 mA, f = 100 MHz Pout = 15WfZin MHz OHMS VDD = 28 V, IDQ = 25 mA, Pout = 15 W 100 7.5 – j9.73 150 4.11 – j7.56 f ZOL* 200 2.66 – j6.39 MHz OHMS 400 2.39 – j2.18 100 13.7 – j16.8 27 Ω Shunt Resistor Gate–to–Ground 150 9.08 – j15.38 200 4.74 – j8.92 400 4.28 – j4.17 ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.

Figure 21. Large–Signal Series Equivalent Figure 22. Large–Signal Series Equivalent Input Impedance, Zin† Output Impedance, ZOL* MRF136 MRF136 Zin & ZOL* are given

from drain–to–drain and 400 gate–to–gate respectively. VDD = 28 V, IDQ = 100 mA, 400 Pout = 30 W Zin 150 f Z225 in

ZOL*

MHz Ohms Ohms ZOL* 30 59.3 – j24 40.1 – j8.52 150 50 48 – j33.5 37 – j11.9 100 20.5 – j34.2 29 – j16.5 100 150 4.77 – j25.4 20.6 – j19 100 50 225 3 – j9.5 13 – j16.7 400 2.34 – j3.31 10.2 – j14.3 f = 30 MHz Feedback loops: 560 ohms in series with 0.1 µF Drain to gate, each side of push–pull FET 50 f = 30 MHz ZOL* = Conjugate of the optimum load imped- ance into which the device operates at a given output power, voltage and frequency.

Figure 23. Input and Outut Impedance MRF136Y MOTOROLA RF DEVICE DATA MRF136 MRF136Y

, MRF136 f S11 S21 S12 S22 (MHz) |S11| ± φ |S21| ± φ |S12| ± φ |S22| ± φ 2.0 0.988 –11 41.19 173 0.006 67 0.729 –12 5.0 0.970 –27 40.07 164 0.014 62 0.720 –31 10 0.923 –52 35.94 149 0.026 54 0.714 –58 20 0.837 –88 27.23 129 0.040 36 0.690 –96 30 0.784 –111 20.75 117 0.046 27 0.684 –118 40 0.751 –125 16.49 108 0.048 22 0.680 –131 50 0.733 –135 13.41 103 0.050 19 0.679 –139 60 0.720 –142 11.43 99 0.050 16 0.678 –145 70 0.709 –147 9.871 96 0.050 14 0.679 –149 80 0.707 –152 8.663 93 0.051 13 0.683 –153 90 0.706 –155 7.784 91 0.051 13 0.682 –155 100 0.708 –157 7.008 88 0.051 13 0.680 –157 110 0.711 –159 6.435 86 0.051 14 0.681 –158 120 0.714 –161 5.899 85 0.051 15 0.682 –159 130 0.717 –163 5.439 82 0.052 16 0.684 –160 140 0.720 –164 5.068 80 0.052 17 0.684 –161 150 0.723 –165 4.709 80 0.052 18 0.686 –161 160 0.727 –166 4.455 78 0.052 18 0.690 –161 170 0.732 –167 4.200 77 0.052 18 0.694 –162 180 0.735 –168 3.967 75 0.052 19 0.699 –162 190 0.738 –169 3.756 74 0.052 19 0.703 –163 200 0.740 –170 3.545 73 0.052 20 0.706 –163 225 0.746 –171 3.140 69 0.053 22 0.717 –163 250 0.742 –172 2.783 67 0.053 25 0.724 –163 275 0.744 –173 2.540 64 0.054 27 0.724 –163 300 0.751 –174 2.323 60 0.055 29 0.736 –163 325 0.757 –175 2.140 58 0.058 32 0.749 –163 350 0.760 –176 1.963 54 0.059 35 0.758 –163 375 0.762 –177 1.838 52 0.062 38 0.768 –163 400 0.774 –179 1.696 50 0.065 41 0.783 –163 425 0.775 –179 1.590 48 0.068 43 0.793 –163 450 0.781 +179 1.493 46 0.071 46 0.805 –163 475 0.787 +177 1.415 43 0.074 47 0.813 –164 500 0.792 +176 1.332 40 0.079 48 0.825 –164 525 0.797 +175 1.259 38 0.083 50 0.831 –164 550 0.801 +175 1.185 37 0.088 51 0.843 –164 575 0.810 +174 1.145 36 0.094 52 0.855 –164 600 0.816 +173 1.091 34 0.101 52 0.869 –165 625 0.818 +171 1.041 32 0.106 53 0.871 –165 650 0.825 +170 0.994 30 0.112 53 0.884 –165 675 0.834 +169 0.962 29 0.119 53 0.890 –165 700 0.837 +168 0.922 27 0.127 53 0.906 –166 725 0.836 +167 0.879 25 0.133 52 0.909 –167 750 0.841 +166 0.838 25 0.140 53 0.917 –167 775 0.844 +165 0.824 24 0.148 52 0.933 –167 800 0.846 +163 0.785 21 0.154 50 0.941 –168 Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 0.5 A MRF136 MRF136Y MOTOROLA RF DEVICE DATA, +j50 +90° +120° +60° +j25 +j100 f = 800 MHz +j150 +150° +30°

S

+j10 12+j250 600 f = 800 MHz 400 +j500 0.18 0.14 0.10 0.06 0.02 0 10 25 50 100 150 250 500 180° 0° 400 0.16 0.12 0.08 0.04 150 – j500 – j10 70 S11 – j250 –150° – 30° – j150 – j25 – j100 –120° – 60° – j50 –90°

Figure 24. S11, Input Reflection Coefficient Figure 25. S12, Reverse Transmission Coefficient

versus Frequency versus Frequency

VDS = 28 V ID = 0.5 A VDS = 28 V ID = 0.5 A

+90° +j50 +120° 70 +60° +j25 +j100 +j150 +150° +30° S21 150 +j10 +j250 +j500 180° 8642f= 800 MHz 0° 0 10 25 50 100 150 250 500 f = 800 MHz 150 – j500 – j10 70 – j250 –150° – 30° S22 – j150 – 60° – j25 – j100 –120° – 90° – j50

Figure 26. S21, Forward Transmission Coefficient Figure 27. S22, Output Reflection Coefficient

versus Frequency versus Frequency

VDS = 28 V ID = 0.5 A VDS = 28 V ID = 0.5 A MOTOROLA RF DEVICE DATA MRF136 MRF136Y

, DESIGN CONSIDERATIONS bipolar RF power devices, facilitates the incorporation of The MRF136 and MRF136Y are RF power N–Channel manual gain control, AGC/ALC and modulation schemes into enhancement mode field–effect transistors (FETs) designed system designs. A full range of power output control may especially for HF and VHF power amplifier applications. require dc gate voltage excursions into the negative region. Motorola RF MOS FETs feature planar design for optimum manufacturability. AMPLIFIER DESIGN Motorola Application Note AN211A, FETs in Theory and Impedance matching networks similar to those used with Practice, is suggested reading for those not familiar with the bipolar transistors are suitable for MRF136 and MRF136Y. construction and characteristics of FETs. See Motorola Application Note AN721, Impedance Matching The major advantages of RF power FETs include high gain, Networks Applied to RF Power Transistors. Both small signal low noise, simple bias systems, relative immunity from ther- scattering parameters (MRF136 only) and large signal mal runaway, and the ability to withstand severely mis- impedance parameters are provided. Large signal imped- matched loads without suffering damage. Power output can ances should be used for network designs wherever possible. be varied over a wide range with a low power dc control signal, While the s parameters will not produce an exact design thus facilitating manual gain control, ALC and modulation. solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies DC BIAS outside those presented in the large signal impedance plots. The MRF136 and MRF136Y are enhancement mode FETs RF power FETs are triode devices and are therefore not and, therefore, do not conduct when drain voltage is applied unilateral. This, coupled with the very high gain, yields a without gate bias. A positive gate voltage causes drain current device capable of self oscillation. Stability may be achieved to flow (see Figure 11). RF power FETs require forward bias using techniques such as drain loading, input shunt resistive for optimum gain and power output. A Class AB condition with loading, or feedback. S parameter stability analysis can quiescent drain current (IDQ) in the 25–100 mA range is provide useful information in the selection of loading and/or sufficient for many applications. For special requirements feedback to insure stable operation. The MRF136 was such as linear amplification, IDQ may have to be adjusted to characterized with a 27 ohm input shunt loading resistor, while optimize the critical parameters. the MRF136Y was characterized with a resistive feedback The MOS gate is a dc open circuit. Since the gate bias circuit loop around each of its two active devices. does not have to deliver any current to the FET, a simple For further discussion of RF amplifier stability and the use resistive divider arrangement may sometimes suffice for this of two port parameters in RF amplifier design, see Motorola function. Special applications may require more elaborate Application Note AN215A on page 6–204 in the RF Device gate bias systems. Data (DL110 Rev 1). GAIN CONTROL LOW NOISE OPERATION Power output of the MRF136 and MRF136Y may be Input resistive loading will degrade noise performance, and controlled from rated values down to the milliwatt region (>20 noise figure may vary significantly with gate driving imped- dB reduction in power output with constant input power) by ance. A low loss input matching network with its gate varying the dc gate voltage. This feature, not available in impedance optimized for lowest noise is recommended. MRF136 MRF136Y MOTOROLA RF DEVICE DATA,

PACKAGE DIMENSIONS A U NOTES: M 1. DIMENSIONING AND TOLERANCING PER ANSIY14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

Q1MINCHES MILLIMETERS

4 DIM MIN MAX MIN MAX A 0.960 0.990 24.39 25.14

RBB0.370 0.390 9.40 9.90

C 0.229 0.281 5.82 7.13 D 0.215 0.235 5.47 5.96 E 0.085 0.105 2.16 2.6623H0.150 0.108 3.81 4.57 J 0.004 0.006 0.11 0.15

D S K 0.395 0.405 10.04 10.28K M 40 50 40 50

Q 0.113 0.130 2.88 3.30 R 0.245 0.255 6.23 6.47 S 0.790 0.810 20.07 20.57 U 0.720 0.730 18.29 18.54 STYLE 2: PIN 1. SOURCE

J 2. GATE

3. SOURCE 4. DRAIN

C H E SEATING PLANE CASE 211–07 ISSUE N MRF136

NOTES: –A– 1. DIMENSIONING AND TOLERANCING PER ANSI

L Q Y14.5M, 1982.IDENTIFICATION 2 PL NOTCH 2. CONTROLLING DIMENSION: INCH.

0.15 (0.006) MTAMNMINCHES MILLIMETERS43DIM MIN MAX MIN MAX A 0.965 0.985 24.51 25.02 –N– B 0.355 0.375 9.02 9.52 C 0.230 0.260 5.84 6.60

K12D0.055 0.065 1.40 1.65

E 0.102 0.114 2.59 2.90

D F 0.055 0.065 1.40 1.65 F H 0.160 0.170 4.06 4.314 PL J 0.004 0.006 0.10 0.15

0.38 (0.015) MTAMNMK0.120 0.140 3.05 3.55 L 0.725 BSC 18.42 BSC N 0.225 0.241 5.72 6.12 Q 0.125 0.135 3.18 3.42

B 0.38 (0.015) MTAMNM J C

STYLE 1:

H E PIN 1. GATE (INPUT)

SEATING 2. GATE (INPUT)–T– PLANE 3. DRAIN (OUTPUT) 4. DRAIN (OUTPUT) SOURCE IS FLANGE

CASE 319B–02 ISSUE C MRF136Y MOTOROLA RF DEVICE DATA MRF136 MRF136Y

, Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MRF136 MRF136Y ◊ MOTOROLA RF DEVICEM RDFA1T3A6/D

]
15

Similar documents

Order this document SEMICONDUCTOR TECHNICAL DATA by MRF134/D The RF MOSFET Line N–Channel Enhancement–Mode .designed for wideband large–signal amplifier and oscillator applications up
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF134/D The RF MOSFET Line N–Channel Enhancement–Mode .designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range. • Guaranteed 28 Volt, 150 MHz Performance Output Power = 5.0 Watts Minimum Gain = 11 dB 5.0 W, to
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF10070/D The RF Line
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF10070/D The RF Line Designed for 1025–1150 MHz pulse common base amplifier applications such as TCAS, TACAN and Mode–S transmitters. • Guaranteed Performance @ 1090 MHz Output Power = 70 Watts Peak 70 W (PEAK) Gain = 9.0 dB Min 1025 –1150 MHz •
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF10031/D The RF Line
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF10031/D The RF Line Designed for 960–1215 MHz long or short pulse common base amplifier applications such as JTIDS and Mode–S transmitters. • Guaranteed Performance @ 960 MHz, 36 Vdc Output Power = 30 Watts Peak 30 W (PEAK) Minimum Gain = 9.0 dB
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF1002MA/D The RF Line
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF1002MA/D The RF Line .designed for Class B and C common base amplifier applications in short and long pulse TACAN, IFF, DME, and radar transmitters. • Guaranteed Performance @ 1090 MHz, 35 Vdc Output Power = 2.0 Watts Peak Minimum Gain = 10 dB 2
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF10005/D The RF Line
Order this document SEMICONDUCTOR TECHNICAL DATA by MRF10005/D The RF Line .designed for CW and long pulsed common base amplifier applications, such as JTIDS and Mode S, in the 0.96 to 1.215 GHz frequency range at high overall duty cycles. • Guaranteed Performance @ 1.215 GHz, 28 Vdc Output Power =
Order this document SEMICONDUCTOR TECHNICAL DATA by MRA0510–50H/D The RF Line
Order this document SEMICONDUCTOR TECHNICAL DATA by MRA0510–50H/D The RF Line Designed primarily for wideband, large–signal output and driver amplifier stages in the 500 to 1000 MHz frequency range. • Designed for Class AB Linear Power Amplifiers • Specified 28 Volt, 1000 MHz Characteristics: Output
Order this document SEMICONDUCTOR TECHNICAL DATA by MPSA42/D NPN Silicon
Order this document SEMICONDUCTOR TECHNICAL DATA by MPSA42/D NPN Silicon COLLECTOR *Motorola Preferred Device BASE EMITTER MAXIMUM RATINGS 2 Rating Symbol MPSA42 MPSA43 Unit Collector–Emitter Voltage VCEO 300 200 Vdc CASE 29–11, STYLE 1 TO–92 (TO–226AA) Collector–Base Voltage VCBO 300 200 Vdc Emitte
DISCRETE SEMICONDUCTORS DATA SHEET General RF Power Modules and Transistors for Mobile Phones 1996 Jun 06 File under Discrete Semiconductors, SC09
DISCRETE SEMICONDUCTORS DATA SHEET General RF Power Modules and Transistors for Mobile Phones 1996 Jun 06 File under Discrete Semiconductors, SC09 QUALITY • Acceptance tests on finished products to verify conformance with the device specification. The test Total Quality Management results are used f
Order this document SEMICONDUCTOR TECHNICAL DATA by MMDF6N03HD/D  Medium Power Surface Mount Products
Order this document SEMICONDUCTOR TECHNICAL DATA by MMDF6N03HD/D Medium Power Surface Mount Products Motorola Preferred Device DUAL TMOS Dual HDTMOS devices are an advanced series of power POWER MOSFET MOSFETs which utilize Motorola’s High Cell Density TMOS 30 VOLTS process. These miniature surface
Order this document SEMICONDUCTOR TECHNICAL DATA by MMDF6N02HD/D  Medium Power Surface Mount Products DUAL TMOS
Order this document SEMICONDUCTOR TECHNICAL DATA by MMDF6N02HD/D Medium Power Surface Mount Products Motorola Preferred Device DUAL TMOS POWER MOSFET Dual HDTMOS devices are an advanced series of power 6.0 AMPERES MOSFETs which utilize Motorola’s High Cell Density TMOS 20 VOLTS process. These minia
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Low leakage, platinum barrier SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR7- 35 40 45 voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These devices can withs
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR6- 35CT 40CT 45CT voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These devi
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky barrier rectifier diodes in a full pack, plastic envelope featuring PBYR30- 35CTF 40CTF 45CTF low forward voltage drop and VRRM Repetitive peak reverse 35 40 45 V absence of st
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR30- 35CT 40CT 45CT voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These dev
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR30- 60PT 80PT 100PT voltage drop and absence of stored VRRM Repetitive peak reverse 60 80 100 V charge. These de
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky barrier rectifier diodes in a full pack, plastic envelope featuring PBYR25- 35CTF 40CTF 45CTF low forward voltage drop and VRRM Repetitive peak reverse 35 40 45 V absence of st
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR25- 35CT 40CT 45CT voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These dev
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope suitable for surface PBYR2- 35CT 40CT 45CT mounting, featuring low forward VRRM Repetitive peak reverse 35 40 45 V voltage drop and absen
DISCRETE SEMICONDUCTORS DATA SHEET PBYR2100CT series Schottky barrier double diodes Product specification 1996 May 03 Supersedes data of December 1993
DISCRETE SEMICONDUCTORS DATA SHEET handbook, halfpage M3D087 PBYR2100CT series Schottky barrier double diodes Product specification 1996 May 03 Supersedes data of December 1993 File under Discrete Semiconductors, SC01 FEATURES PINNING MARKING • Low switching losses PIN DESCRIPTION MARKING TYPE NUMBE
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky barrier rectifier diodes in a full pack, plastic envelope featuring PBYR20- 35CTF 40CTF 45CTF low forward voltage drop and VRRM Repetitive peak reverse 35 40 45 V absence of st
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR20- 35CT 40CT 45CT voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These dev
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR20- 60CT 80CT 100CT voltage drop and absence of stored VRRM Repetitive peak reverse 60 80 100 V charge. These d
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a full pack, plastic envelope featuring low PBYR16- 35F 40F 45F forward voltage drop and absence of VRRM Repetitive peak reverse 35 40 45 V stored charge. These d
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Low leakage, platinum barrier SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR16- 35 40 45 voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These devices can with
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky barrier rectifier diodes in a full pack, plastic envelope featuring PBYR15F- 35CTF 40CTF 45CTF low forward voltage drop and VRRM Repetitive peak reverse 35 40 45 V absence of s
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Dual, low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR15- 35CT 40CT 45CT voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These dev
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Low leakage, platinum barrier, SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a full pack, plastic envelope featuring low PBYR10- 35F 40F 45F forward voltage drop and absence of VRRM Repetitive peak reverse 35 40 45 V stored charge. These d
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Low leakage, platinum barrier SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR10- 35 40 45 voltage drop and absence of stored VRRM Repetitive peak reverse 35 40 45 V charge. These devices can with
GENERAL DESCRIPTION QUICK REFERENCE DATA
GENERAL DESCRIPTION QUICK REFERENCE DATA Low leakage, platinum barrier SYMBOL PARAMETER MAX. MAX. MAX. UNIT schottky rectifier diodes in a plastic envelope featuring low forward PBYR10- 60 80 100 voltage drop and absence of stored VRRM Repetitive peak reverse 60 80 100 V charge. These devices can wi
DISCRETE SEMICONDUCTORS DATA SHEET Package outlines RF Power Transistors for UHF 1996 Feb 20 File under Discrete Semiconductors, SC08b
DISCRETE SEMICONDUCTORS DATA SHEET Package outlines RF Power Transistors for UHF 1996 Feb 20 File under Discrete Semiconductors, SC08b 8.0 0.1 Al 2 O3 0.125 4.0 2.4 3.4 max max 3.0 BeO 3 seating 5.30 1.3 plane max 1.0 20.6 max 1.8 max seating plane 3.2 4 2.9 0.4 M min 1 4.0 min130.75 3.2 5.2 5.35 2.